
 1

Implementation of a probabilistic-fuzzy modelling

system in Matlab

Katarzyna Błaszczyk, Opole University of Technology

Abstract

This article is about a toolbox created in the
Matlab environment which implements
a probabilistic-fuzzy system to model the
representation of linguistic knowledge in the form of
IF-THEN (1) rules along with weights determining
fuzzy events probability [2-4]. A toolbox is based on
three different functions: newmod (Tab.1), genreg
(Tab. 2), infermod. These functions allow the creation
of a new model structure as in Fig. 1. They will also
generate a knowledge base along with the usage of
empirical data and fuzzy inference on the basis of
the created model. The influence of different
parameters calling a function on a structure and the
complexity of the calculations of the model were
studied. The rules of the optimization of the
programes code from the point of lasting time of
calculations were also described (Tab. 5-6).

1. Introduction

Recently there has been a growing interest in
research concerning the development and
implementation of fuzzy modelling methods.
The proof of this is the growing number of
publications and program tools designed for such
implementations [1]. The advantage of the fuzzy
modelling techniques is the possibility of the
implementation in uncertain conditions and
imprecise information. On the basis of empirical
data appropriate models of non-linear objects are
created also in the case when mathematical
description is difficult or impossible.

Fuzzy models allow in a comprehensible and
characteristic of people way, in the form of
IF-THEN rules, to create the activity of a given
system. One of the methods of the presentation of
linguistic knowledge is the probabilistic-fuzzy rule-
based model [2-4]. In the above mentioned model
the idea of knowledge base is to define the reliability
of the rules which comprise marginal and conditional
probability of fuzzy events. The advantage of this
model is the possibility of implementing it in the
stochastic processes [2,3] for which most of the
models is not precise enough. However, there is
a possibility to obtain the outputs on the basis of the

probable distribution of events. Then, seemingly
logical ambiguous rules acquire the meaning in the
inference process of the system. The disadvantage of
the method is the complexity of calculations
especially when a large number of analysed values of
the process is conducted and a broad range of
defined linguistic variables is present. In order to
reduce this disadvantage, in [7] the implementation
of one of the data mining – association rules was
considered.

This article will present an attempt to implement
the described system in the Matlab calculation
environment with taking into consideration the time
optimization of the program code. In order to
conduct the calculations a processor Intel Pentium
M 1.73 GHz with 1.48 GB Ram, and Matlab 6.0
were used.

2. Probabilistic-fuzzy models

The basis of the probabilistic-fuzzy modelling of
MISO system is the presentation of the knowledge
base in the form of file rules as follows [4-6]:

wj(IF i
j
Aisx THEN jBisy /1 (w1/j)

ALSO jBisy /2 (w2/j)

…

 ALSO jmBisy / (wm/j)) (1)

where
x=(x1,x2,…,xn)T – vector of input variables,

xX1 X2… XnRn,

y – output variable of the model, yYR,
Ai

j – linguistic value of input variables, i=1,…,n,
j=1,…,J,
Bl/j – linguistic value of the output variable,
l=1,…,m,
wj – weight of j-th file rule,
wl/j – weight of elementary rule.

Symbols Xi, i=1,…,n and Y state spaces of the
input variables and the output variable. The
discretization of Xi, Y took place in disjoint intervals
of the variable values respectively ai=(ai

1,…, ai
K) and

b=(b1,…, bK).
Linguistic values of the model are identified with

fuzzy sets according to Zadeh’s definition [11]. They

X International PhD Workshop
OWD’2008, 18–21 October 2008

 2

are defined by membership functions. In the case of
disjoint intervals of the variable values degrees of

membership are described as]1,0[)(i
kA
ai

j

 ,

k=1,…,K for the input variable and]1,0[)(
/

kB b
jl



for the output variable. However dependence always
takes place:





J

j

kA
a

j
1

1)( , k=1,…,K, (2)

where Aj, j=1,…J determines fuzzy sets specified
for the one linguistic variable.

Calculating the values of the rules weights (1) the
definition of marginal and conditional probability of
fuzzy events has to be accomplished according to
Zadeh`s definition [12]. Then, for a SISO model, the
probability of the occurrence of the single fuzzy
event Aj for the antecedents (e.g. “x is high”) is:





K

k

kAkj aaxPAP
j

1

)()()( . (3)

 The probability of the simultaneous fuzzy event
occurrence for the Aj antecedents (e.g. “x is high”)
and Bl consequents (e.g. “y is average”) is described
as follows [2,4]:


 


K

m

K

k

mBkAmkjl baTyxpABP
lj

1 1

))(),((),()( (4)

where),(yxpmk , as the probability in the sense

),(mk byaxP  , determines the relation of the

number of observations (in which the variable x
achieves the value of ak range and the variable y
achieves the value of bm range) to the general

number of observations in space XY.

Symbol T determines any t-norm operation.
Probability of fuzzy evens in the case of MISO
model is calculated similarly.

The calculations above allow the weight of the
rules to be as follows:

- wj, that is marginal probability of fuzzy
events as (3),

- wl/j, that is conditional probability of fuzzy

events as
)(

)(
)/(

j

jl

jl
AP

ABP
ABP


 .

An example of a different fuzzy modelling method
with reliable structures can be found in [6].

3. Construction of probabilistic-

fuzzy models in Matlab

In the Matlab environment, a toolbox
implemented a probabilistic-fuzzy system according
to the estimations presented in chapter two. It is
based on three different functions: newmod, genreg,
infermod. They enable the creation of a new model,
generate knowledge base with the usage of empirical
data and fuzzy inference based on a created model.

3.1. Creation of the new model

The creation of the new model is possible due to
newmod function. Its calling options are described in
Tab. 1. Then, the object of the model based on
a structure presented in Fig. 1, is generated. Structure
stores essential information concerning stages of
fuzzyfication, interpretation of the rules base and
defuzzyfication of probabilistic-fuzzy system.

Main structure of

the model

Grades of the membership function

(gmfs) for disjoint intervals

Inputs and Outputs

Name: 'Input2'

Range: [0 100]

Gmfs

ArgGmfs: [5 ... 95]

MinGmfs

Name: 'PFMod'

NumGmfs: 10

OperAnd: 'prod'

OperImp: 'prod'

MetDefuzz: 'coa'

Inputs

Outputs

Rules: [2 1 1 0.1 0.8;

 2 1 2 0.1 0.2;

…

 1 3 3 0.5 0.2]

Name: 'Input1'

Range: [0 1]

Gmfs

ArgGmfs: [0.05 ... 0.94]

MinGmfs: [0 … 0.89]

Name: 'Output1'

Range: [-5 5]

Gmfs

ArgGmfs: [-4.5 ... 4.5]

MinGmfs: [-5 … 4]

Label: 'High'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Middle'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Low'

Values: [0.8 0.6 0.4 0.2 0 0 0 0 0 0]

Label: 'Large'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Medium'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Small'

Value: [0.9 0.5 0.2 0.1 0 0 0 0 0 0]

Label: 'Large'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Medium'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Small'

Values: [0.9 0.5 0.2 0.1 0 0 0 0 0 0]

Fig.1. Example of the structure of the probabilistic -fuzzy model in Matlab.

 3

Tab.1.

Specifications of newmod function

Syntax

model=newmod(modName,inX,outX,numGmf,numMf, …
typeMf,options)

Name attribute Description

modName name of the creating model

inX matrix of input data

outX matrix of output data

numGmf number of disjoint intervals in variable’s
space (default: 10)

optionMf vector of membership function options
(default: {'trimf' 10})

optionMet vector of inference options:
{'operAnd' 'operImp' 'metDefuzz'}
(default: {'prod' 'prod' 'coa'})

optionX 2xN matrix of range variable’s values
(optional)

The correct choice of membership function
depends on the knowledge and experience of
experts. The method allows to define the
membership degrees for constant intervals of the
variable values or it gives the possibility to define
them by standard membership functions which are
available in Toolbox Fuzzy Logic (Fig. 2) [9].
Function newmod creates constant values of
membership function (gmfs) on the basis of the same
membership functions for each variable in the
model. In order to differentiate parameters the
following functions can be used: addmod, addinp,
addinpmf, addout, addoutmf. Researcher’s experiments
prove that it is advantageous to use the simplest
multiangular membership functions which makes the
process of tuning of the fuzzy model easier and they
guarantee high accuracy [8].

Fig.2. Membership functions in Matlab (cf. [9]).

Fig. 3 presents the transformation mode of
membership function into constant degrees for
intervals. In each case, fuzzy sets fulfil the conditions
of the partition of unity (2) which influences
smoothing of the models surface [8].

Fig.3. Grades of membership from the standard

membership function.

3.2. Generation rules

The above model is deprived of the main
component of the structure – rules base. Genreg
function (Tab. 2) allows to generate the rules in the
form of (1) on the basis of experimental data from
matrix inX and outX together with the usage of
a chosen t-norm operator.

Tab.2.

Specifications of genreg function

Syntax

model=genreg(model,inX,outX,tNorm)

Name attribute Description

modName name of the created model

inX matrix of input data

outX matrix of output data

tNorm operator tNorm used to create rules

In order to use Matlab properties of environment
calculations were conducted with the usage of the
vector record and multidimensional matrix. Fig. 4, as
an example, presents: the scheme of algorithm for
the calculations of joint probability of fuzzy events

)(12
ijl AABP  for the model with 2 inputs, the

product as t-norm operator and discretion of spaces
variables for 3 disjoint intervals.

The time of the function execution was reduced
several times in relation to calculations done with the
usage of the loop. Unfortunately, time complexity of
the algorithm is still exponential dependence in
relation to the number of the models parameters.
Then calculations become ineffective for the models
of many variables.

The following Tab. 3-4 and Fig. 5-6 present
dependence on the number of generated rules and
the lasting time of calculations to different
parameters of calling function.

 4

Fig.4. Schematic computation joint probability of three fuzzy events.

Tab.3.

Influence of the membership function of the number of
rules and lasting time of calculations (numInputs: 3,

numOutputs: 1, numMfs: 10, numGmfs: 10,
t-norm: product)

Membership function
Number of

elementary rules
in the model

Time of the
rules

generating [s]

Gaussian curve
(gaussmf)

10000 45.00

Generalized bell curve
(gbellmf)

10000 51.61

Pi-shaped curve (pimf) 2894 42.86

Triangular function
(trimf)

7105 49.48

Trapezoidal function
(trapmf)

2894 38.83

Difference of two
sigmoids function

(dsigmf)
10000 53.01

Product of two sigmoids
function (psigmf)

10000 52.24

Tab.4.

Dependence of the number of elementary rules of the
model and the lasting time of calculations to the type

of implemented t-norm operator (numInputs: 2,
numOutputs: 1, mf: gaussmf, numMfs: 10,

numGmfs: 10)

Operator t-norm
Number of

elementary rules
in the model

Time of the rules
generating [s]

Min 1000 2.38

Product 1000 2.33

Hamacher product 1000 2.53

Drastic product 0 2.44

Einstein product 1000 2.45

Bounded difference 728 2.30

0,00

20,00

40,00

60,00

80,00

100,00

1 5 10 15 20 25 30 35 40 45

T
h

o
u
s
a

n
d
s

Number of fuzzy sets

N
u
m

b
e
r

o
f

e
le

m
e
n

ta
ry

 r
u
le

s
 i
n

 m
o
d

e
l

Fig.5. The number of elementary rules depending on

number of fuzzy sets for variables.

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1 5 10 15 20 25 30 35 40 45

Number of fuzzy sets
T
im

e
 o

f
ru

le
s
 g

e
n
e
ra

ti
n
g

 [
s

]

Fig.6. The time of generating rules depending on

number of fuzzy sets for variables.

4. Time optimization of the program

code

The fuzzy system described was implemented
with the usage of Matlab structural programming.
In order to optimize the time of calculations the
following programming rules were applied:

Tab.5.

Principle of the time optimization in Matlab (cf. [10])

The usage of functional m-files instead of script files

Proper usage of data

Description Example

Allocation of the
variables with known
sizes.

InOut=zeros(size([inX outX]));

Creating only essential
variables.

h=h(find(h>0));

Correct choice of the
type of variables and
their keeping.

Implementation of integers instead of
floats

Correct choice of pre-
defined functions.

Implementation, where it is possible,
of the function num2str instead of
in2str (time for genreg function
execution for 1 input variable with
the usage of int2str – 0.17s, num2str –
0.30s).

Counting of the table
elements according to
columns not lines.

vec=zeros(1,numAtr);
for i=1:numAtr

 for j=1:numMf

 if ~isempty(find(mf(j,i)))

 vec(1,i)=vec(1,i)+1;

 end

 end

end

 5

Tab.6.

Principle of the time optimization in Matlab cont.

(cf. [10])

Vectorized the code

The usage of the
operator colon in
reference to e.g.
whole lines or
columns.

Example of calculations of activating
degree of the rules with the usage:
* product
h=valuMfIn(:,1);
for j=2:numIn

 h=h.*valuMfIn(:,j);

end;

(time execute: 0.015 s for 12 inputs and
10000 measurements)
Instead of:
for i=1:numM, h(i)=valuMfIn(i,1); end

for j=2:numIn

 for i=1:numM

 h(i)=h(i)*valuMfIn(i,j);

 end

end;
(time execute: 0.235 s for 12 inputs and
10000 measurements)
* drastic product
h=valuMfIn(:,1);

for j=2:numIn

 d = zeros(size(h));
 b=valuMfIn(:,j);

 d(find(max(h,b)==1)) = …

 min(h(find(max(h,b)==1)), …

 b(find(max(h,b)==1)));

 h=d;

end

(time execute: 0.032 s for 10 inputs and
10000 measurements)
Instead of:
for i=1:numM

 h(i)=valuMfIn(i,1);

end

for j=2:numIn

 for i=1:numM, b(i)=valuMfIn(i,1); end
 for i=1:numM

 if max(h(i),b(i))==1

 h(i)=min(h(i),b(i))

 else h(i)=0; end

 end

end
(time execute: 0.453 s for 10 inputs and
10000 measurements)

The usage of the
standard functions
operating on the
tables e.g. find, min,
max, sum, prod, all,
repmat, etc.

Usage of the array
arguments: ./, .*, .^

Usage of the index
logic in reference
to elements of
matrix.

After introducing JIT-Accelerator, codes
vectoring is not so advantageous unless it retains
proper programming rules [10]. However, while
operating on multidimensional matrixes JIT-
Accelerator does not assist time optimization.
In cases when algorithms do not allow vectoring of
the code and to operate on matrix, then recoded C
language and usage of mex-files may be considered.

5. Conclusion

The tool described in this article helps to build
a probabilistic-fuzzy model on the basis of
unrestricted empirical data. Thanks to the possibility
of the implementation of different parameters while
building the structure there is a possibility of
matching the model to the analysed process.
Unfortunately calculations are only efficient for
a small number of variables and when the number of
fuzzy sets is relatively small. The aim of future
research is the method of identification of the model
which will lessen calculation input and the number

of rules but at the same time it will retain clarity and
accuracy of the model.

Bibliography

[1] Korbicz J., Kościelny J.M., Kowalczuk Z.,
Cholewa W.: Diagnostyka procesów. Modele.
Metody sztucznej inteligencji.. Zastosowania,
WNT, Warszawa, 2002.

[2] Walaszek-Babiszewska A.: Linguistic
Knowledge Representation for Stochastic
Systems, proceedings of Internat.
Multiconference on Computer Science and
Information Technology, 2007, pp. 141-150.

[3] Walaszek-Babiszewska A.: IF-THEN liguistic
fuzzy model of a discrete stochastic system. In:.
Artificial Intelligence and Soft Computing,
EXIT, Polish Neural Network Society,
Warsaw, 2006, pp.169-174.

[4] Walaszek-Babiszewska A.: Construction of
fuzzy models using probability measures of
fuzzy events, proceedings of MMAR 2007, pp.
661-666.

[5] Rutkowski L.: Metody i techniki sztucznej
inteligencji, PWN, Warszawa, 2005.

[6] Yager R.R., Filev D. P.: Podstawy modelowania
i sterowania rozmytego, WNT, Warszawa,
1995.

[7] Walaszek-Babiszewska A., Błaszczyk K.,
Czabak A.: Budowa rozmytych modeli
procesów stochastycznych przy użyciu reguł
asocjacji, W: Sterowanie i automatyzacja:
aktualne problemy i ich rozwiązania,
Malinowski K., Rutkowski L (red.), EXIT,
Warszawa, 2008.

[8] Piegat A.: Modelowanie i sterowanie rozmyte,
EXIT, Warszawa, 2003.

[9] Fuzzy Logic Toolbox 2, User’s Guide, The
MathWorks, Release 2008a.

[10] Programowanie w języku Matlab,
Optymalizacja czasowa kodu,
www.rose.aei.polsl.pl/~darekc/inst/pjm/PjMw
2.pps.

[11] Zadeh L.A.: The concept of a linguistic variable
and its application to approximate reasoning,
Information Sciences, Part I: pp. 199-240, 8,
1975.

[12] Zadeh L.A.: Probability measures of fuzzy
events, Journal of Mathematical Analysis and
Applications, vol. 23, pp. 421-427, 2, 1968.

Author:
MSc. Eng. Błaszczyk Katarzyna
Opole University of Technology
ul. Ozimska 75
45-370 Opole
tel. (077) 423-40-35

email: k.blaszczyk@po.opole.pl

mailto:kaczor.donald@disney.com

