
 1 

Implementation of a probabilistic-fuzzy modelling 

system in Matlab 

Katarzyna Błaszczyk, Opole University of Technology 
 

Abstract 

This article is about a toolbox created in the 
Matlab environment which implements 
a probabilistic-fuzzy system to model the 
representation of linguistic knowledge in the form of 
IF-THEN (1) rules along with weights determining 
fuzzy events probability [2-4]. A toolbox is based on 
three different functions: newmod (Tab.1), genreg 
(Tab. 2), infermod. These functions allow the creation 
of a new model structure as in Fig. 1. They will also 
generate a knowledge base along with the usage of 
empirical data and fuzzy inference on the basis of 
the created model. The influence of different 
parameters calling a function on a structure and the 
complexity of the calculations of the model were 
studied. The rules of the optimization of the 
programes code from the point of lasting time of 
calculations were also described (Tab. 5-6). 

1. Introduction 

Recently there has been a growing interest in 
research concerning the development and 
implementation of fuzzy modelling methods.  
The proof of this is the growing number of 
publications and program tools designed for such 
implementations [1]. The advantage of the fuzzy 
modelling techniques is the possibility of the 
implementation in uncertain conditions and 
imprecise information. On the basis of empirical 
data appropriate models of non-linear objects are 
created also in the case when mathematical 
description is difficult or impossible. 

Fuzzy models allow in a comprehensible and 
characteristic of people way, in the form of  
IF-THEN rules, to create the activity of a given 
system. One of the methods of the presentation of 
linguistic knowledge is the probabilistic-fuzzy rule-
based model [2-4]. In the above mentioned model 
the idea of knowledge base is to define the reliability 
of the rules which comprise marginal and conditional 
probability of fuzzy events. The advantage of this 
model is the possibility of implementing it in the 
stochastic processes [2,3] for which most of the 
models is not precise enough. However, there is 
a possibility to obtain the outputs on the basis of the 

probable distribution of events. Then, seemingly 
logical ambiguous rules acquire the meaning in the 
inference process of the system. The disadvantage of 
the method is the complexity of calculations 
especially when a large number of analysed values of 
the process is conducted and a broad range of 
defined linguistic variables is present. In order to 
reduce this disadvantage, in [7] the implementation 
of one of the data mining – association rules was 
considered. 

This article will present an attempt to implement 
the described system in the Matlab calculation 
environment with taking into consideration the time 
optimization of the program code. In order to 
conduct the calculations a processor Intel Pentium 
M 1.73 GHz with 1.48 GB Ram, and Matlab 6.0 
were used. 

2. Probabilistic-fuzzy models 

The basis of the probabilistic-fuzzy modelling of 
MISO system is the presentation of the knowledge 
base in the form of file rules as follows [4-6]: 

wj(IF  i
j
Aisx  THEN jBisy /1  (w1/j)   

ALSO jBisy /2 (w2/j)         

…      

    ALSO jmBisy / (wm/j))    (1) 

where 
x=(x1,x2,…,xn)T – vector of input variables,  

xX1 X2… XnRn, 

y – output variable of the model, yYR,  
Ai

j – linguistic value of input variables, i=1,…,n, 
j=1,…,J, 
Bl/j – linguistic value of the output variable, 
l=1,…,m, 
wj – weight of j-th file rule, 
wl/j – weight of elementary rule. 

Symbols Xi, i=1,…,n and Y state spaces of the 
input variables and the output variable. The 
discretization of  Xi, Y took place in disjoint intervals 
of the variable values respectively ai=(ai

1,…, ai
K) and 

b=(b1,…, bK). 
Linguistic values of the model are identified with 

fuzzy sets according to Zadeh’s definition [11]. They 
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are defined by membership functions. In the case of 
disjoint intervals of the variable values degrees of 

membership are described as  ]1,0[)( i
kA
ai

j

 , 

k=1,…,K for the input variable and ]1,0[)(
/

kB b
jl

  

for the output variable. However dependence always 
takes place: 





J

j

kA
a

j
1

1)( , k=1,…,K,  (2) 

where Aj, j=1,…J determines fuzzy sets specified 
for the one linguistic variable.  

Calculating the values of the rules weights (1) the 
definition of marginal and conditional probability of 
fuzzy events has to be accomplished according to 
Zadeh`s definition [12]. Then, for a SISO model, the 
probability of the occurrence of the single fuzzy 
event Aj for the antecedents  (e.g. “x is high”) is: 





K

k

kAkj aaxPAP
j

1

)()()(  . (3) 

 The probability of the simultaneous  fuzzy event 
occurrence for the Aj antecedents (e.g. “x is high”) 
and Bl consequents (e.g. “y is average”) is described 
as follows [2,4]: 


 


K

m

K

k

mBkAmkjl baTyxpABP
lj

1 1

))(),((),()(  (4) 

where ),( yxpmk , as the probability in the sense 

),( mk byaxP  , determines the relation of the 

number of observations (in which the variable x 
achieves the value of ak range and the variable y 
achieves the value of bm range) to the general 

number of observations in space XY. 

Symbol T determines any t-norm operation. 
Probability of fuzzy evens in the case of MISO 
model is calculated similarly. 

The calculations above allow the weight of the 
rules to be as follows:  

- wj, that is marginal probability of fuzzy 
events as (3), 

- wl/j, that is conditional probability of fuzzy 

events as 
)(

)(
)/(

j

jl

jl
AP

ABP
ABP


 . 

An example of a different fuzzy modelling method 
with reliable structures can be found in [6]. 

3. Construction of probabilistic-

fuzzy models in Matlab 

In the Matlab environment, a toolbox 
implemented a probabilistic-fuzzy system according 
to the estimations presented in chapter two. It is 
based on three different functions: newmod, genreg, 
infermod. They enable the creation of a new model, 
generate knowledge base with the usage of empirical 
data and  fuzzy inference based on a created model. 

3.1. Creation of the new model  

The creation of the new model is possible due to 
newmod function. Its calling options are described in 
Tab. 1. Then, the object of the model based on 
a structure presented in Fig. 1, is generated. Structure 
stores essential information concerning stages of 
fuzzyfication, interpretation of the rules base and 
defuzzyfication of probabilistic-fuzzy system.  

 

Main structure of 

the model

Grades of the membership function 

(gmfs) for disjoint intervals 

Inputs and Outputs

Name: 'Input2'

Range: [0 100]

Gmfs

ArgGmfs: [5 ... 95]

MinGmfs

Name:   'PFMod'

NumGmfs:  10

OperAnd:   'prod'

OperImp:   'prod'

MetDefuzz: 'coa'

Inputs

Outputs

Rules: [2 1 1 0.1 0.8;

            2 1 2 0.1 0.2;

…

            1 3 3 0.5 0.2]

Name: 'Input1'

Range: [0 1]

Gmfs

ArgGmfs: [0.05 ... 0.94]

MinGmfs: [0 … 0.89]

Name: 'Output1'

Range: [-5 5]

Gmfs

ArgGmfs: [-4.5 ... 4.5]

MinGmfs: [-5 … 4]

Label: 'High'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Middle'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Low'

Values: [0.8 0.6 0.4 0.2 0 0 0 0 0 0]

Label: 'Large'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Medium'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Small'

Value: [0.9 0.5 0.2 0.1 0 0 0 0 0 0]

Label: 'Large'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Medium'

Value: [0 0.1 0.2 0.5 0.2 0.1 0 0 0 0]
Label: 'Small'

Values: [0.9 0.5 0.2 0.1 0 0 0 0 0 0]

 

Fig.1. Example of the structure of the probabilistic -fuzzy model in Matlab. 
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Tab.1. 

Specifications of newmod function 

Syntax 

model=newmod(modName,inX,outX,numGmf,numMf, … 
typeMf,options) 

Name attribute Description 

modName name of the creating model   

inX matrix of input data 

outX matrix of output data 

numGmf number of disjoint intervals in variable’s 
space  (default: 10) 

optionMf vector of membership function options 
(default: {'trimf' 10}) 

optionMet vector of inference options:  
{'operAnd' 'operImp' 'metDefuzz'}  
(default: {'prod' 'prod'  'coa'}) 

optionX 2xN matrix of range variable’s values  
(optional) 

 

The correct choice of membership function 
depends on the knowledge and experience of 
experts. The method allows to define the 
membership degrees for constant intervals of the  
variable values or it gives the possibility to define 
them by standard membership functions which are 
available in Toolbox Fuzzy Logic (Fig. 2) [9]. 
Function newmod creates constant values of 
membership function (gmfs) on the basis of the same 
membership functions for each variable in the 
model. In order to differentiate parameters the 
following functions can be used: addmod, addinp, 
addinpmf, addout, addoutmf. Researcher’s experiments 
prove that it is advantageous to use the simplest 
multiangular membership functions which makes the 
process of tuning of the fuzzy model easier and they 
guarantee high accuracy [8]. 

 
Fig.2. Membership functions in Matlab (cf. [9]).  

 

Fig. 3 presents the transformation mode of 
membership function into constant degrees for 
intervals. In each case, fuzzy sets fulfil the conditions 
of the partition of unity (2) which influences 
smoothing of the models surface [8]. 

 
Fig.3. Grades of membership from the standard 

membership function.  

3.2. Generation rules 

The above model is deprived of the main 
component of the structure – rules base. Genreg 
function (Tab. 2)  allows to generate the rules in the 
form of  (1) on the basis of experimental data from 
matrix inX and outX together with the usage of 
a chosen t-norm operator. 

Tab.2. 

Specifications of genreg function 

Syntax 

model=genreg(model,inX,outX,tNorm) 

Name attribute Description 

modName name of the created model   

inX matrix of input data 

outX matrix of output data 

tNorm operator tNorm used to create rules 

 

In order to use Matlab properties of environment 
calculations were conducted with the usage of the 
vector record and multidimensional matrix. Fig. 4, as 
an example, presents: the scheme of algorithm for 
the calculations of joint probability of fuzzy events 

)( 12
ijl AABP   for the model with 2 inputs, the 

product as t-norm operator and discretion of spaces 
variables for 3 disjoint intervals.  

The time of the function execution was reduced 
several times in relation to calculations done with the 
usage of the loop. Unfortunately, time complexity of 
the algorithm is still exponential dependence in 
relation to the number of the models parameters. 
Then calculations become ineffective for the models 
of many variables. 

The following Tab. 3-4 and Fig. 5-6 present 
dependence on the number of generated rules and 
the lasting time of calculations to different 
parameters of calling function.  
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Fig.4. Schematic computation joint probability of three fuzzy events.  

 

Tab.3. 

Influence of the membership function of the number of 
rules and lasting time of calculations (numInputs: 3, 

numOutputs: 1, numMfs: 10, numGmfs: 10,  
t-norm: product)  

Membership function 
Number of 

elementary rules 
in the model 

Time of the 
rules 

generating  [s] 

Gaussian curve 
(gaussmf) 

10000 45.00 

Generalized bell curve 
(gbellmf) 

10000 51.61 

Pi-shaped curve (pimf) 2894 42.86 

Triangular function 
(trimf) 

7105 49.48 

Trapezoidal function 
(trapmf) 

2894 38.83 

Difference of two 
sigmoids function 

(dsigmf) 
10000 53.01 

Product of two sigmoids 
function (psigmf) 

10000 52.24 

 

Tab.4. 

Dependence of the number of elementary rules of the 
model and the lasting time of calculations to the type 

of implemented t-norm operator (numInputs: 2, 
numOutputs: 1, mf: gaussmf, numMfs: 10,   

numGmfs: 10) 

Operator t-norm 
Number of 

elementary rules 
in the model 

Time of the rules 
generating  [s] 

Min 1000 2.38 

Product 1000 2.33 

Hamacher product 1000 2.53 

Drastic product 0 2.44 

Einstein product   1000 2.45 

Bounded difference 728 2.30 
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Fig.5. The number of elementary rules depending on 

number of fuzzy sets for variables.  
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Fig.6. The time of generating rules depending on 

number of fuzzy sets for variables.  

4. Time optimization of the program 

code 

The fuzzy system described was implemented 
with the usage of Matlab structural programming.  
In order to optimize the time of calculations the 
following programming rules were applied: 

Tab.5. 

Principle of the time optimization in Matlab (cf. [10]) 

The usage of functional m-files instead of script files  

Proper usage of data 

Description Example 

Allocation of the 
variables with known 
sizes. 

InOut=zeros(size([inX outX])); 

Creating only essential 
variables. 

h=h(find(h>0)); 

Correct choice of the 
type of variables and 
their keeping. 

Implementation of integers instead of 
floats 

Correct choice of pre-
defined functions.   

Implementation, where it is possible, 
of the function num2str instead of 
in2str (time for genreg function 
execution for 1 input variable with 
the usage of int2str – 0.17s, num2str – 
0.30s).  

Counting of the table 
elements according to 
columns not lines. 

vec=zeros(1,numAtr);  
for i=1:numAtr  

  for j=1:numMf 

    if ~isempty(find(mf(j,i))) 

      vec(1,i)=vec(1,i)+1; 

    end 

  end 

end 
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Tab.6. 

Principle of the time optimization in Matlab cont.  

(cf.  [10]) 

Vectorized the code  

The usage of the 
operator colon in 
reference to e.g. 
whole lines or 
columns. 

Example of calculations of  activating 
degree of the rules with the usage: 
* product  
h=valuMfIn(:,1); 
for j=2:numIn 

   h=h.*valuMfIn(:,j); 

end;  

(time execute: 0.015 s for 12 inputs and 
10000 measurements) 
Instead of: 
for i=1:numM, h(i)=valuMfIn(i,1); end 

for j=2:numIn    

    for i=1:numM 

        h(i)=h(i)*valuMfIn(i,j); 

    end 

end; 
(time execute: 0.235 s for 12 inputs and 
10000 measurements) 
* drastic product 
h=valuMfIn(:,1); 

for j=2:numIn 

  d = zeros(size(h));  
  b=valuMfIn(:,j); 

  d(find(max(h,b)==1)) = … 

  min(h(find(max(h,b)==1)), … 

  b(find(max(h,b)==1)) ); 

  h=d; 

end 

(time execute: 0.032 s for 10 inputs and 
10000 measurements) 
Instead of: 
for i=1:numM 

    h(i)=valuMfIn(i,1); 

end 

for j=2:numIn     

    for i=1:numM, b(i)=valuMfIn(i,1); end 
    for i=1:numM 

        if max(h(i),b(i))==1  

            h(i)=min(h(i),b(i)) 

        else h(i)=0; end 

    end 

end 
(time execute: 0.453 s for 10 inputs and 
10000 measurements) 

The usage of the 
standard  functions 
operating on the 
tables e.g. find, min, 
max, sum, prod, all, 
repmat, etc.  

Usage of the array 
arguments: ./, .*, .^ 

Usage of the index 
logic in reference 
to elements of 
matrix.  
 

After introducing JIT-Accelerator, codes 
vectoring is not so advantageous unless it retains 
proper programming rules [10]. However, while 
operating on multidimensional matrixes JIT-
Accelerator does not assist time optimization.  
In cases when algorithms do not allow vectoring of 
the code and to operate on matrix, then recoded C 
language and usage of mex-files may be considered. 

5. Conclusion 

The tool described in this article helps to build 
a probabilistic-fuzzy model on the basis of 
unrestricted empirical data. Thanks to the possibility 
of the implementation of different parameters while 
building the structure there is a possibility of 
matching the model to the analysed process. 
Unfortunately calculations are only efficient for 
a small number of variables and when the number of 
fuzzy sets is relatively small. The aim of future 
research is the method of identification of the model 
which will lessen calculation input and the number 

of rules but at the same time it will retain clarity and 
accuracy of the model. 
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